
RD-A99 99 PC OR MODULAR SOFTUARE REQUIRES A THIRD PARTY CONNECT iI
Aa u) ROCHESTER UNIV NY DEPT OF COMPUTER SCIENCE

199LSIFE S A FRIEDBERG JUN 187 TR-229 DRCA76-S5-C-881FG127 UsInI IIIIIII
mmmmmImmmIi

4,'

- I-IlII

L 3

II=-- __ IIII

.5

.0:

S. - • • • • • • • • • D : ..

I PC fo r Modular Softwiare

~-t.Requires a Third Party Connect

Stuart A. Friedberg

Computer Science Department !n\est fRcetrE

00Rochester, New York 1462KJ

TR 220

DTI DTICCT
JAN 1.5 1988

Deatmn of.. Copue S. iene

.nv f 0Rcet
RochesterS. Ne-ok 42

DIM ff. STT N A. 87 122.0

Approved for ublic release

Dwribuion U'mTte

|I

IPC for Modular Software
Requires a Third Party Connect

Stuart A. Friedberg
Computer Science Department D T IC

Uni~ersity of Rochester ELECTE
Rochester, New York 14627 JAN 151988

TR 220 S
June 1987 H

Abstract

Reconfigurabon. on-line maintenance, load balancing. and similar operations on complex soft'are
require (among other things) dynamic binding of communicating peers, so that modules can be installed
and removed in a framework of other functional modules. A binding may take the form of TCP/IP
protocol connection. remote procedure call server location, shared memory address resolution. or object
handle resolution. depending on the underlying communication mechanism. Howe~er. the need for
abstraction and modularit is independent of the particular IPC mechanism(s) being used. A module
should not need to kno" ho" it is used. specifically, how it is bound together with other modules to
implement a more complex funcuon.

Therefore. the bindings between two modules A and B should in general be created and destroyed by
a third module C. We call this facility a third party connect. The module C should not have to hae an.
particular relationship (other than authentication) to modules A and B in order to dynamically connect and
disconnect them. In particular. it should not have to be one of A and B, be a common ancestor of them, or
have an existing binding to them. Similarly, neither A nor B should have to take an active part in
establishing or tearing down bindings.

Most IPC mechanisms either do not support third party connects at all (e.g., TCP/IP, Accent), do not
allow dynamic reconfiguration (e.g.. UNIX), or give binding authority to only a fixed internal element of
the system (e.g., remote procedure call). Designers of future network communication protocols and
interprocess communication mechanisms should provide for more flexible session layer features in general,
third party connect in particular.

This work was supported in part by U.S. Army Engineering Topographic Laboratories research grant
no. DACA76-85-C-001. We thank the Xerox Corporation University Grants Program for providing
equipment used in the preparation of this paper.

..... :................... L. ',

SECURITY CLASSIFICATION OF THIS PAGE (hen Dare Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE RE COMPLETIORMBEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. RECIP E T Tr q.&OTA R

TR 220

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

IPC for Modular Software Technical ReportRequires a Third Party Connect TcnclRpr
6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

Stuart A. Friedberg DACA76-85-C-0001

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

Computer Science Department AREA & WORK UNIT NUMBERS

University of Rochester
Rochester, NY 14627

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency June 1987
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, VA 22209 11
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report)

Office of Naval Research
Information Systems Unclassified
Arlington, VA 22217 1Sa. DECLASSIFICATION DOWNGRADING

16. DISTRIBUTION STATEMENT tof this Report)

Distribution of this document is unlimited. Accession For

NIS GPRA&I
DTIC TAB
Unannounced L
T rqt I f i itn _

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, it different fulom Report) _

A v A .

IS. SUPPLEMENTARY NOTES , ,.

None *N .

A my

19. KEY WORDS (Continue on reverse side if necessary and idenwify by block number) - •

Binding, protocol connection, inter-process communication, third party
connect , reconfiguration, modularity, survivable applications,

distributed software

20 ABSTRACT (Continue on reverse aide if neceewmy and Identify by block ntmber)

Reconfiguration, on-line maintenance, load balancing, and similar operations
on complex software require (among other things) dynamic binding of commu-
nicating peers, so that modules can be installed and removed in a frame-
work of other functional modules. A binding may take the form of TCP/IP
protocol connection, remote procedure call server location, shared memory
address resolution, or object handle resolution, depending on the underlying
communication mechanism. However, the need for abstraction and modularity is
independent of the particular IPC mechanism(s) being used. A module should

DD ,oA" 1473 EDITION OF I NOV 65 IS OUSOLETE

SECURITy CLASSIFICATION OF THIS PAGE (When Date Entered)

- - -- -

20. ABSTRACT (Continued)

--, not need to know how it is used (specifically, how it is bound together with
other modules to implement a more complex function).t-. .-

Therefore, the bindings between two modules A and B should in general be created
and destroyed by a third module C. We call this facility a third party connect.
The module C should not have to have any particular relationship (other than
authentication) to modules A and B in order to dynamically connect and disconnect
them. In particular, it should not have to be one of A and B, be a common
ancestor of them, or have an existing binding to them. Similarly, neither A nor
B should have to take an active part in establishing or tearing down bindings.

Most IPC mechanisms either do not support third party connects at all (e.g.,
TCP/IP, Accent), do not allow dynamic reconfiguration (e.q., UNIX), or give
binding authority to only a fixed internal element of the system (e.g., remote
procedure call). Designers of future network communication protocols and

- i:terprocess communication mechanis., s should provide for more flexible session
-- layer features in general, third party connect in particular.

-I.d

.1"

*- .

O.,

04

-~ 1. Introduction
,Many investigations of distributed programming start %kith a particular interprocess

communication mechanism and later explore its impact on structuring distributed
programs. The Uniersit. of Rochester Hierarchical Process Composition project (iPC)
began Aith a particular struLcturing mechanism, and explored its impact on intevpr,'cc,,,
communication [l.eF85b]. [l.eF85a]. Some of the results are quite general, and here %st
report an observation that applies to most soffikare systems that emphasize abstraction o
modularity and allo%% d\namic reconfiguration.

Most modern soft%.are systems build up complex applications from a collection of
more-or-less independent modules implementing different functions. In various ssteni,
such modules might be Ada packages, Eden object, heavyweight processes, etc., and the
intermodule (interprocess) communication mechanisms used to bind them together
obviously vary as Aidel. Although our observations took place in the specific context of
processes and transport protocols, we will use the generic terms module and IPC
mechanism.

There are three distinct areas of responsibility in interprocess or intermodule
communication: sigtialflng. composition, and implernentation. Th'ese functions take
different forms depending on the communication mechanism being used, but in general.
signalling defines thc interactions betAeen communicating peers (what), composition
defines which peers communicate (with whom), and implementation pro'ides the medil,
of communication (iit/ what).

We "ill not ha'e much to saN about signalling, except that it is a completel, distinct
function from composition. The interesting obser'ations are, in a system supporting
abstraction and reconfiguration:
(1) Composition is distinct from implementation.
(2) Composition is an incremental and distributed function.
(3) Implementation requires a third party connect.

2. Signalling. Composition, and Implementation are Distinct Functions
It is important to distinguish signalling, composition, and implementation. A

signalling operation is an act of communication, like sending a message, writing to a file.
* or invoking an operation on an object. A signalling sequence defines the basic behavior

* of a process. Composition defines how basic behaviors are combined into a more
complex application, by controlling the communication paths among its components.
Implementation establishes the physical media needed to support the logical paths
determined by composition.

@- While the correspondence is not exact, in terms of the ISO seven-layer model,
signalling is user invocation of the transport layer, composition is user invocation of the
session layer, and implementation is carried out by the session layer. Tables 1 and 2
illustrate the signalling and composition operations, respectively, for several interprocess
communication mechanisms.' These Tables are meant to be suggestive, rather than

Mechanism Signalling Operations

CONIC send, receive, reply

Hydra send, receive, reply

RPC call, accept-reply

socket various, usually send, receive

memory read, write, P, V, fetch-and-phi

. file read, write, seek

mailbox deposit, withdraw

link send, receive

filter send, receive

Linda insert, remove, retrieve, eval-and-expand

Table 1.

Mechanism Composition Operations

CONIC link, unlink

Hydra connect, disconnect

RPC bind

socket bind, listen, accept, connect, disconnect

memory link, load, address

file create, open, close, inherit

mailbox create, name

link create, transfer

filter set-filter

1 Linda set-pattern

" Table 2.

. exhaustive.
* As shown by the Tables, different mechanisms generally have different signalling

operations. For example, signalling with a message passing mechanism involves deciding

S, i Descnptions of these mechanisms may be found in: CONIC: (KMS83]; Hydra: [WLH81]: RPC:
[Lis80]. [Nel8l: socket: [CCC701: mailbox: [Bri73), [BFL76]. [HLG78], [JCD79]: Link: [BHM77]. (RaR81].
[ZwL83, IACF87J (Accent terminology for link is "port", not to be confused with the Hydra and CONIC
ports): broadcast filters: [FFH73]. [Ary8l], [KeS84]. [GKZ85: Linda: [Ge1851.

2

when to send and receike messages, and Ahat the contents of messages should be.
Signalling Aith a semaphore mechanism insolxes deciding when to wait (P) and signal
(1). Signalling with a remote procedure call mechanism invol'es deciding %,hen to call a

* procedure, Ahen to return from a call, and \hat the arguments and return values should
be.

The conmpositional opcr~itl,\n for these three examiple mechanisrili' are dc idirw
\, hom to send a message to (%k horn to receive from), deciding "hich processes ha\c accc,,,

* -to the semaphore, and deciding v hich client stubs are bound to %hich server ertric ,
respectie e. The implementation of conventional interprocess communication
mechanisms is usuall. triggered directh by composition and managed by the host
operating s\stem.

Diiding an application into man\ modules reduces complexit b) providing maw,
small, specific interfaces with a small number of possible clients. Interfaces are usuall\
talked about as static specifications, but it is a module's behavior or pattern of
interactions that is important, not its entry points and arguments. Each module expresses
a behavior through its signalling vith related modules, and in systems that enforc,
abstraction. this beha\ior Aill not depend on the identit of a communicating pccr
module. That is, signalling should not depend on composition.

D namic installation, replacement, or removal of a module from a running system
requires (among other things) the ability to change the bindings between comrnunicating
modules. Ulpgrading a system on-line requires. for example, the abilit. to remoxe all

communication paths to an outdated module, remoxe it, create a replacement. and then
create communication paths from the old modules pcers to the ne , module. To pro ide
general purpose tools for reconfiguring applications on the fly, composition should not
require the active cooperation of the affected modules. That is, dynamic compositiOn
should not depend on signalling, or on the identities of the composed modules.

,~ We are concerned mainly A ith hoA processes can be dynamicall reconfigured to
support flexible, long-lied. sursi~able applications. This means v\e are not interestcd in

* ' signalling per se. but very interested in composition as a logical operation and
implementation as a ph.sical operation. The HPC project has a specific notion of ho\. to
form logical communication paths between processes and groups of processes. but our

:- observations \ill be phrased in terms of more general systems.

3. Composition is Incremental and Distributed
Signalling, composition and implementation are not just conceptually different

activities. If distributed programming is to incorporate more complex abstractions than
the trivial client-server model, these activities must actually be carried out by different
agents. We argue that composition must be an activity distributed among multiple
agents. Further, the composing agents are generally not the same as the signalling agents.

We are interested in software systems with three significant properties. An
interesting system (1) allows communication with a group of related modules (processes)
as a group, (2) enforces the abstraction of a group, and (3) supports non-trivial internal

3

'6

N:%
o1 S li

structures in a group. 2 In such a system,
(1) logical communication paths are naturallh diided into several segments, one for

each group that the path in~oles, and

(2) composition is a distributed acti\it'.

Readers \ ho object to "path" as too suggesti\e of physical routing are encouraged to
substitute "binding decision". The difference between binding decision and binding is
just that betmeen composition and implementation.

There is no shortage of interesting systems. The following list of examples could be
* doubled or tripled in length easily. Allowking for vagaries of notation, Figure 1 is a

-. natural illustration for the kind of nested structure that can be described, and in some
cases implemented directly, by each of the example systems.

* distributed systems -
CONIC [KMS83], HPC [LeF85a]

* programming languages and en~ironments-
DPL-82 [Eri82). Pict [GIT84]. PRO\ET [LeM82I

* system design, analysis, and modelling tools -
DREAI [Rid81], GRACE/CS [HaK84], SADT [RosS5]. SARA [FFR86]. SRF\1a lA IrS5]

The direct paths between modules at the same level of abstraction, combined b\ the
paths inside modules that connect implementing children to the external interfaces of the

Pump Controller Control System Instrument Room
i'. Sensorss"--

•]SSesoos

~Flow il Console

"- Pum I AnaCsistHar

I Driver]= (Log

'~p

Figure 1.

2 Either nesting of groups or designating specific modules to receive communication addressed to a

" group satisfies property 3. Systems with only single level of process grouping and uniform internal
treatment of processes within a group (e.g.. multicasting), such as V [ChZ851, lack propert. 3.

'."

4

6%

module, naturally produce incremental compositions. In most cases, different agents 'Ail
be responsible for the design or run-time management of different abstractions, leadinF to
distribution of composition, as vkell.

Een simpler and more common s.stems demonstrate incremental compositi,,l.
Consider a sstem offering only one ser ice Aith multiple ser% er processes, a file ser% ick.
St:. Fer procc,,. eiihc i belongs to, or is a client of, the file service, and ih
multiprocess iniplc,-cntation of the file service is transparent to the clients. Bef,1u. a

' client and a server process communicate, the client must decide to access the file seric.
and some agent in the file sersice must decide which server process is to handle the
client's request. Neither the client, nor the file service agent, can decide unilaterally to
bind the specific client and server processes. The logical path between the
communicating processes has two segments. (There are two independent contributions to
the decision to bind that particular pair of processes).

Not all our example systems support reconfiguration, and static structure avoids
nm-time composition altogether. Composition is then typically an activit of human
designers, while implementation is carried out by configuration software. Signalling
remains strictl\ a run-time actixit\. However, static structure makes the question of
distributed and incremental composition a moot issue of design methodology. \\c
suggest that in successful methodologies composition remains distributed and increment,

*- when the metric involves separation among specification modules rather than procc,,
'7 groups or nested modules.

4. Efficient lmplenientation Requires a Third Party Connect
Robust. flexible. distributed software "ill be, and is, designed as applications wkith

sekeral lekels of internal abstraction and significant, long-lived, internal communication
patterns. Jo allow designer and maintainers run-time access to the relationships amorn,
an application's coinponents, the logical grouping and communication paths should b.
explicit and persitent. Howexer. Ahile this useful structure should be kept at run-tirni.
it is not necessar\ or desirable to use all of it when manipulating physical resources like
processes and communication channels.

CO\IC. HPC. PRO\EJ. and the other examples operating at run-time proide a
.alue-added service by supporting intermediate levels of abstraction and incremental
definition of communication paths. If all the purely abstract structure is eliminated b\
erasing the abstract grouping and throwing away all the incomplete paths, the remaining
structure consists of real modules (processes) and real communication media. Such an
elimination is illustrated in Figure 2. Ignoring abstract structure in this way has no effect
on the behavior of the system. No real modules, or paths between real modules, have
been remoed.

So, on the one hand, there is the user model with lots of convenient abstraction, and
on the other, there is the physical environment with only real pieces. Some agency, for
convenience we will call it an operating system,3 translates the incrementally composed
logical paths of the user model into the appropriate physical communication channels.

5%

04

I WO Concrete

~Abstract

Figure 2.

This is the third area of responsibility implementation.
Clearly, the only acceptable implementations are those that create physical medi",

directly between the real communicating modules, without additional overhead, and
regardless of the length and complexity of the logical path joining them. This is
practically a definition of a third-part\ connect. After the operating system has strippcd
aw ay the user level abstractions, it must be able to connect and disconnect directly an of
the modules under its aegis. This facilit\ is critical for efficient implementation of all
multiprocess soft are that emphasizes abstraction: Ability to bind (anid unbind) modules
With: a comup7icat iot path may rest with an agency that never wvas, is, or will be bound to
those moddles or associated with that path, In other words, it must be possible to connect
and disconnect t~o processes from a third process.

5. Discussion

5.1. State of the Art

It is imperati\e to abandon IPC mechanisms khere the decision to connect processes
must be made b\ the processes being connected. It is unreasonable to develop comple\
multiprocess software with such mechanisms. because they make it impossible to
introduce the appropriate use of abstraction. This is. sadly, the state of most internet'ork
transport protocols, like TCP/IP, vkhere communicating processes have to explicitl.
cooperate in establishing connections. (To be fair, XNS Bulk Data Transfer is an
internetkorking protocol designed from the beginning to support third-part connect
[Xer84].)

Another inadequate tool is inheritance of communication paths from a common
ancestor. This is the mechanism used by the UNIX shells to implement pipelines, and in
principle, more complex patterns of communication between processes. It does support
modularity and abstraction, but unfortunately does not allow for later reconfiguration of

0 an application, even to replace a failed process.

3 This agency may provided in any number of different ways, depending on the extent to %hich

" applications can be dynamically reconfigured. In the examples we have cited, the agency is vanouslN the
operating system, a pnvileged server process, a run-time library, a system generation utility, and a compiler.

6

The third common technique is most clearly illustrated by link systems, where to
create a path betmeen processes A and B, process C must already have a path to each of
them. Links support modularity and reconfiguration, but require the actike cooperation
of the processes being reconfigtred. In particular, process C can volunteer a neA path,
but can not cause processes .4 and B to stop using an old path. (A link system allowking
the okner of a link to tranJL- receive rights and to delete a link even if rights are held
b\ other processes \oXld not hac thi, deficiency.) Link systems usuall\ also use'

inheritance to get o~er the bootstrapping problem of pro'iding a process its initial paths.

None of these techniques, self-composition, inheritance, or links, is an adequate tool
for the efficient, dynamic reconfiguration of modular softyare, yet there is nothing
fundamentally difficult about pro'iding third-party connect, or similar functions. For
example, the portion of the TCP/IP protocol that is concerned with setting up and
tearing doyen connections (session layer issues) is clearly defined. It would be
straightfoard to modify TCP to negotiate the connect and disconnect subprotocols with
(generally) a third party. The server "passixe mode" should be separated from the

,- socket/address multiplexing facilit\.

It is no coincidence that modern system design and analysis tools emphaiie
abstraction and modularit\. Interesting systems in the sense of Section 3 \kill become
only more common. Clearl. design methodology has outstripped the abilities of IPC
mechanisms to support it efficientl\. 1he reason is perhaps historical: soft~kare designers
are painfull, avkare of the benefits of modularity and the pitfalls of the expedient
solution. IPC designers are often trained in a hardware culture, specifically the long-haul
circuit sAitching tradition, Aith a concern for performance and traditional services.
Ftovke~er. A e can do a great deal more \ith [PC than emulate telephones and terminals!
Desigrers o" nek network protocols and IPC mechanisms Aill be doing application
desiners a disser~ice if the\ do not include session issues in general. and third-part)
connect in pa-ticular. in their considerations.

-. 2. Authorization

Gi'ven the potential for unilateral. uncooperative change (of communication paths).
the question of authorization and permission naturally arises. To some extent, the three
techniques just discussed are limited precisely because they want to limit changes in
composition to implicitly authorized processes. The HPC project provides a specific
answer to the problem of authentication and authorization, but we do not attempt a

* general ansver!
Instead, we will note that there are at least two places where the permissions for

created or destroying a connection between processes can be checked. First, as
applications incrementally build up logical paths, their permission to modify the
corresponding pieces of (abstract) structure can be checked. Second, as the implementing
agency attempts to create or destroy a real communication channel, its permission to
modify that channel can be checked.

The designer of intemetwork transport protocols will be primarily interested in the
- . latter case. Consider a modified TCP/IP. When a would-be implementing agent

.Ae
-0 4 6" ' - .? .' -- -" ? ' -: -" - ' ' - " ' ' - --" " ' . ' - - " - " - : " - " ' - . " -- - " . - " .. " " " 7' -' - : - ' - : " ' - ., , "

;-:-' ",'..... ',-". -;-".---.-.".r.....'

attempts to negotiate a change to a connection, the protocol software can authenticate the
agent. While the IP and ISO internets lack practical authentication services, the Xero\
corporate internet has provided them for several years. In this ka , the transport
protocol providing the third-parts connect needs to kno" nothing about the structure of
the applications in which it is being used, and the Aoiker processes in an application
simply ha~e to agree on a common implementing agent and so inform the protocol*

• ** -,5.3. W\hy Persistent Logical Connections (Compositions)?

The primary objection to communication based on explicit, persistent connections is
traditional, and based on the cost of establishing and destroying sAitched circuit NirnL
circuits in the telegraph and telephone industries. To a large extent, this limiting
technology has been left behind, even by those industries, but stronger responses to thc
claim of excessive cost can be made when composition is separated from implementation.

First, changes in logical composition only have an effect on media when a completc
logical path is created or destroyed. Therefore, man, if not most. reconfigurations 'ill

affect onl abstract structure and incur no cost in set-up or tear-dok n of physical medi:i.

Second, many IPC mechanisms are fundamentally connectionless. Consid c r
* datagrams Ahere "connecting" simply means determining the destination address of an

outbound datagram. Establishing a communication channel incurs no cost until a
datagram is actually sent, and then no greater cost than sending any other datagram.

Thus, by. separating composition from implementation, a software designer and
maintainer can have the abstraction of explicit, persistent connections Aith the
performance and cost of the most appropriate communication mechanism(s).

J.

8

6. References
[Alf,,51 M. W. Alford, "SRF\I at the Age of Eight: The Distributed Computill!

Design S~stern . Computer IS. 4 (April 198.4, 36-46.
(ACI'Si Y. Arts , H. Cham-t and R. FInkel. "Interproccss Communic'iiitn in)

Chirlouc-. 1I1If Sof7ji%0r, 4. 1 (.lanuar 19S7), 22-28.
[Ar\ Si] A. K. Ar\ at, 'Super:1_' I- flC IPSLIIlted Au~tonomous Distributed CorriUtdt"011 01':

an Abstri.i Ar ,hiteCture", Ph.D). Thesis, University of Rochester, JII 19%1.
[BFL-76I J. F. B all. J. A. Feldman. J. R. LoA, R. Rashid and P. Rovner, "RIG.

Rochester's Intelligent Gate~kaN: Sy~stem Over~ieA-, IEEE Transaction5 ot':
Sof(%ar Ftgiineering Sf--2, 4 (1976), 321-328.

[BH\1'7] F. Basketi, J. H. Ho~ard and J. T. Montague, "Task Communication III
Demos-. Proceedings 6th Sy' mposium on Operating Systems Principles, West
Lafayette, Indiana, 16-18 November 1977, 23-31.

[B ri31 P. Brinch-l-ansen. Operating Systemns Principles, Prentice-Viall. Fnsle\' ood
Cliffs. Ne~k Jersey, 1973.

[CCC7'01 C. S. Carr, S. D. Crocker and V. G. Cerf. "Host-Host Comm-IUnicatihu
Protcol n th ARP Netork". Proceedings AFIPS Spring Joini Compui'r

ConifcrJ;Le. Atlantic City. Nevk Jersey, 5-7 Mas 1970/ 895T

[C/s] . . -eitn and %V. Zwaenepoel. "Distributed P roc ,ss GrouIps in thc \

Kernel**, Technical Report 85-13, Department Of COMPutcr Science, RICcr-
Ln~esi\.Ferar\ 1985.

l~nS] L.W. risn DL8:A Language for Distributed Processing"
Proceedings 3rd Jnternadional Conference on Disaihuted Computing Sses
Ft. Lauderdale. Florida. 18-22 October 1982, 526-53 1.

[EFKS6 G. Estrin, R. S. Fenchel, R. R. Razouk adM .Vro."AA(~t
ARchitects Apprentice): Modelling, Analysi an iuaIo Sup fr
Design of Concurrent Sy-stems", IEEE Transactions on Software Engineering
SE-U. 2 (Februar\ 1986), 293-311.

* [F FF3 D. J. Farber, J. Feldman. F. R. Heinrich, M. D, Hopwood. K. C. Larson. D.
C. Loomis and L. A. Ro~e, '*The Distributed Computing System-
Proceedings 71h Annual IEEE Computer Society Int'ernational Conference,

* February 1973, 31-34.
[Gel85] D. Gelernter, "Generative Communication in Lindla", Transactions on

Programming Languages and Systems 7, 1 (January, 1985), 80-12
[G1T84] E. P. Glinert and S. L. Tanimoto, "Pict: An Interactive Graphical

* Programming Environment", Computer 17, 11 (November 1984), 7-25.

[GKZ851 R. Gueth, J. Kriz and S. Zueger, "Broadcasting Source- Addressed Messages"
Proceedings 5th International Conference on Distributed Computing Systems,
Denver, Colorado, 13-17 May, 1985, 108-115.

9

',..~ S.,.S ~-2~

-' ----------- -r---~--

[HaK84] M. Harada and T. L. Kunii, "A Recursive Graph Theory as a Formal Basis
, for a Visual Design Language", Proceedings IEEF Computer Societ,

W4'orkshop on "isual language. Hiroshima, 6-8 December 1984, 124-135.
[HI-G78] R. C. Holt. F. D. I azo% sk., G. S. Graham and NI. A. Scott, Structor-,

Concurrctt Progratmmitg vith Operating Svstem Applications, Addl',,,It-
Wesley Reading. Massaihussetts. 1978.

[JCD79] A. K. Jones,, R. J. Chansler. 1. Durham, K. Schaans and S. R. Vegdahl.
"StarOS, A Multiprocessor Operating System for the Support of lask
Force, Proceedings 7th Symposium on Operating Systems Principles, PacifiL
Gro e, (alifornia, Dec 1979, 117-127.

' [KeS84] J. Kepecs and M. Solomon, "SODA: A Simplified Operating System foi
Distributed Applications", TR 527, Universit\ of Wisconsin - Madison.
Januar\ 1984.

[KMS831 J. Kramer, J. Magee. M. Sloman and A. Lister, "CONIC: An Integrated
Approach to Distributed Computer Control Systems", IEF Proceedings 130-
L. I (January 1983), 1-10.

[LeM82J R. J. LeBlanc and A. B. Maccabe. "The Design of a Programming Language
Bascd on Connectikit\ Netorks", Proceedings 3rd International Confercin.c
on Distributed Computing Systems, Ft. Lauderdale, Florida, 18-22 October
1982. 532-541.

[leF85a] 1. J. LeBlanc and S. A. Friedberg, "HPC: A Model of Structure and Chang,
in Distributed Systems", IL E Transactions on Computers C-34. 12
(Decemhcr 19S5). 1114-1129.

[I eFS5b] T. J. leBlianc and S. A. Friedberg. "'Hierarchical Process Composition in
Distribut~ed Operating Systems", Proceedings 5th International Conference on
Disiributed Computing Systems, Denmer, Colorado, 13-17 Ma. 1985, 26-34.

[LisS0] B. Lisko\, "'Remote Procedure Call", Distributed Systems Group Note 64.
%I I I L-aborator\ for Computer Science, June 1980.

[Nel8lI B. Nelson. "Remote Procedure Call", CMU, Pittsburgh. PA-CS-81-119. Nia
1981. Ph.D. Thesis.

* [RaR81l R. F. Rashid and G. G. Robertson, "Accent: A Communication Oriented
Netmork Operating System Kernel", Proceedings 8th Symposium on Operating
Systems Principles, Pacific Grove, California, 14-16 December 1981, 64-75.

[Rid8l] W. E. Riddle, "An Assessment of DREAM", in Software Engineering
Environments, H. Hunke (editor), North-Holland, 1981, 191-221.

[Ros85] D. T. Ross, "Applications and Extensions of SADT", Computer 18, 4 (April
1985), 25-34.

[WLH811 W. A. Wulf, R. Levin and S. P. Harbison, Hydra/C.mmp: An Experimental
Computer System, McGraw-Hill, New York, 1981.

10

.

[Xer84] Xerox Corporation, "Appendix F Bulk Data Transfer", Addendum la to
Xerox System Integration Standard 038112, Stamford, Connecticut, April
1984.

[Z LS3] W. Z7aenepoel and K. A. Lantz, "Perseus: Retrospective on a Portable
Operating System". TR S AN-CS-83-945, Stanford Uniersit\. FeblTr,:
1963.

O'I.

-..

.?.

- ,

.

S,o

b~ID

~%

.9.o..4

,S.

.9.

JRI
U.

4Q. w
P B B • . -'P '• -,

